# [Retros] Solutions Die Schwalbe 241

Joost de Heer joost at sanguis.xs4all.nl
Sat Oct 2 04:46:13 EDT 2010

14375 - Keym
There are two different ways to reach the position:
- d7xc6, h3xSg4xPf5xBe6, d4xQe5, f2xSe3, w-Piecexa-pawn, a2-a8=X, h7xXg6. In
this case, b00, w000 and w00 are legal
- f2xSe3, f7-f1=X, a4xXb5, a7-a1=X, b5xXc6, d7xPc6, c4xSd5xBe6, d4xQe5, h7xQg6,
h2-h8=Q-g4. In this case, only b000 is legal
Tries: 1. 000/Rd1? 00!, 1. Rf1? 000!
Solution: 1. 00! [2. Qd4/Rd1] Rf8 2. Sg7 Kd8 3. Rf8# 1... Kd8 2. Qd4 Kc8 3. Qd7#

14376 - Beluchov
1... Qb1-a1 2. Bf5-h3 h5-h4 3. Bh7-f5 f5-f4 4. Bg8-h7 f6-f5 5. g7-g8=B f7-f6 6.
g6-g7 g7xSh6 7. Sf5-h6 h6-h5 8. Sg3-f5 h7-h6 9. Sf1-g3 Sf3-d2 10. Sd2-f1 Se5-f3
11. g5-g6 Sc6-e5 12. g4-g5 Sa5-c6 13. Ba2-b3 Sb3-a5 14. g3-g4 Qa1-b1 15. Rb1-b2
Rb2-c2 16. g2-g3 Rc2-c3

14377 - Donati, Heimo
1. g3 d5 2. Bg2 Bh3 3. Kf1 e6 4. Qe1 Ba3 5. bxa3 f5 6. Bb2 Nf6 7. Bd4 O-O 8.
Be3 d4 9. Nc3 dxe3 10. dxe3 Qd2 11. Rd1 Qc1 12. Rd7 Rd8 13. Re7 Rd2 14. Qd1
Nbd7 15. Ke1 Rf8 16. Bf1 Bg2 17. h4 Ne8 18. h5 Rf6 19. h6 Rg6 20. hxg7 h5 21.
Rh3 h4 22. Rh2 h3 23. Rh1 h2 24. Nb1 Qxd1

*14378 - Petrovic
The author's intention required 192 moves, but the position can be resolved
much quicker.
Starting position, with black to move:
5Q2/3p4/2B1R1p1/2P2P1P/1PrkPKPP/BRqbrpP1/1pppppSb/4Sss1
1... g5 2. hg5 d6 3. Sh4 g6 4. hg6 d5 5. Qf6 gf6 6. Rf6 Sg3 7. Re6 Sf1 8. g3
Sg3 9. Bd5 Sh1 10. g3 Sg3 11. Bc6 Sh1 12. g3 d6 13. Seg2 f6 14. Qf1 d5 15. Se1
Sg3 16. Rf6 Sh1 17. g3 Sg3 18. Re6 Sh1 19. g3 f6 20. Qh3 Sg3 21. Rf6 Sh1 22. g3
Sg3 23. Re6 Sh1 24. g3 Sg3 25. Bd5 Sh1 26. g3 Sg3 27. Bc6 Sh1 28. g3 d6 29.
Shg2 d5 30. Qh7 f6 31. Sh4 Sg3 32. Rf6 Sf1 33. g3 Sg3 34. Bd5 Sf1 35. g3 Sg3
36. Rc6 Sf1 37. g3 Sg3 38. Rc8 Sf1 39. g3 Sg3 40. Be6 Sh1 41. g3 de6 42. Bh3
Sg3 43. Re8 Sf1 44. g3 e5 45. Re5 f6 46. Bg2 e6 47. Bh1 Sg3 48. Re6 Sf1 49. g3
Sg3 50. Rf6 Sf1 51. g3 Sg3 52. Rc6 Sf1 53. g3 Sg3 54. Rc8 Sf1 55. g3 Sg3 56.
Re8 Sf1 57. g3 e6 58. Shg2 e5 59. Re5 e6 60. Qh3 f6 61. Sh4 Sg3 62. Re6 Sf1 63.
g3 Sg3 64. Rf6 Sf1 65. g3 Sg3 66. Rc6 Sf1 67. g3 Sg3 68. Rc8 Sf1 69. g3 Sg3 70.
Rh8 Sf1 71. g3 e6 72. Shg2 Sg3 73. Rh4 Sf1 74. Qg3

14379 - Gräfrath
1. g4 h5 2. gxh5 Rxh5 3. f4 Rf5 4. e4 Rd5 5. exd5 f5 6. d6 Kf7 7. dxe7 Kf6 8.
e8=Q Qxe8+ 9. Qe2 Qf7 10. Qe8

14380 - Gräfrath
1. g4 f6 2. Bg2 Kf7 3. Bxb7 d5 4. Bxd5+ Kg6 5. Bxg8 h6 6. g5 Bd7 7. gxh6 Ba4 8.
hxg7 Nc6 9. gxh8=R Bg7 10. Be6 Qxh8 11. Bh3 Rf8 12. Bf1

14381 - Dittmann
Mainplan: c5xBb6[Pb2] & Bg8*X[Bf1]#.
1. Kf2xBg1[Ke1] Bh2-g1 2. e5xd6ep! d7-d5 3. Kg3-f2 Bg1-h2 4. Kf2-g3 Bh2-g1 5.
Kg3-f2 Bg1-h2 6. Kf2-g3 g2-g1=B 7. Ke2-f2 f2-f1=B 8. Ke1-e2 f3-f2 9.
Kf2xBg1[Ke1] Bh2-g1 10. Kf1-f2 g3-g2 11. Kf2-f1 g4-g3 (11... Sf7-d8? and short
solution) 12. Kg3-f2 Bg1-h2 13. Kf2-g3 Bh2-g1 14. Kg3-f2 Bg1-h2 15. Kf2-g3
g2-g1=B 16. Kf1-f2 g3-g2 17. Kf2-f1 Sf7-d8 18. Kg2-f2 f4-f3/Bg7-h8 19.
c5xBb6[Pb2] & 1. Bf7[Bf1]#

14382 - Weeth
1. Kb8xBc8[Ke1] Kf8-f7 2. Bc2xRa4=bB[Bc8] a6-a5/d2-d1=B 3. Ra1-a4=bR
d2-d1=B/a6-a5. Now white wants to play Rh1xBh6[Ra1] but black can defend with
Rb4xPa4=wR[Rh1]!. So white first needs to block the magic square: 4.
Ra1xPa3[Ra1] a4-a3 5. Rh1xBh6 Bg7-h6 6. Re7xQf7[Rh1] & 1. Re8 Qxe8[Qd8]#

14383 - Weeth, Wenda
Add bRa8 with solution 1. Rd8xRd1=bR[Ra8] Kh8-h7 2. 000[bR] & 1. Ra7#

14384 - Grevlund
All solutions are of the form 6. Kd2 7. Kd1 12. Kb6=. Using Pascal's triangle,
it's easy to see that there are 67 ways to play 6. Kd2, 1 way to play 7. Kd1
and 30 ways to play Kb6=. So in total there are 67*1*30=2010 solutions.

14385 - Witt
The rectangle has a surface of 4*3=12 units.
a) 1. Qb2 2. Re6 3. Be2 (3x4=12)
b) 1. Qb4 2. Rh6 3. Sh4 (6x2=12)
c) 1. Qc3 2. Rf7 3. Bc7 (3x4=12)
d) 1. Qd1 2. Rc6 3. Sa4 (2*sqrt(2)x3*sqrt(2)=12)

14386 - Dietrich
a) First the pieces on the white squares: bS can't be on c2 or g2, so 6 squares
left. For the second piece, there are 7 squares left, for the third 6, for the
fourth 5. In total 6x7x6x5=1260 possibilities.
Then the pieces on the black squares: bB can't be on d2 or f2, so 5 squares
left (e1 is already occupied). For the second piece there are 6 squares left,
for the third 5, for the fourth 4. In total 5x6x5x4=600 possibilities.
So in total there are 1260x600=756000 possibilities
b) White squares: Black knight can't be on c2, d3, f3, g2, so 8 possibilities.
11 for second piece, 10 for third, 9 for fourth. In total 8x11x10x9=7920
possibilities.
Black squares: Black bishop can't be on d2 or f2. First the case that the
bishop isn't on c3 or g3: 7x10x9x8=5040 possibilities.
Next the case that the bishop is on c3 or g3. In this case, a piece must be on
d2 or f2, and there are 3 possible pieces for this. So in total 2x3x9x8=432
possibilities. So in total 5040+432=5472 possibilities.
So in total there are 7920x5472=43338240 possibilities

14387 - Keym
1a) wKg1, wRh1, bKh3
2a) wKh7, wRh8, bKg8
1b) wKa7, wRa8, bKc8
2b) wKa2, wRa1, bKc1

14388 - Schwarzkopf
wKe2, wSa1, wSa2, wSb1, wSb2, bKc2. Last move must've been Sb3xXa1, but neither
king nor this uncaptured piece have a retromove.