# [Retros] eight officers homebase mate - OPENED DEFINITION

Pascal Wassong pascal.wassong at free.fr
Fri Nov 24 11:45:16 EST 2006

Hello,

I think that a case is missing: Q(sD)/0. It seems to me possible to
mate the bK on c2, with wPc2 and e2 missing.

Of course, I don't say that creating a PG ending in such a mate is
easy.

Have fun composing,
Pascal

>>>>> <raosorio at fibertel.com.ar> writes:

> Hi, I present here the task version opened to different king
> position as suggested by Andrew Buchanan.

> I found that it's much reacher and challenging now. There are 31
> different records to find, both for material and dynamic
> approach, and some of them will be not so easy.

> I include the complete definitions and the Record Table, wich is
> now plenty of room waiting for new achievments.

> Roberto Osorio

> EIGHT OFFICERS HOMEBASE MATE - CONCEPTUAL DEFINITION

> CONSTRAINTS PG diagram showing a mate position where the mating
> side has its 8 officers at homesquare and the remaining pawns at
> homesquare too. Standard material

> CASES There are 11 different cases based on the checking piece
> and the checking line. Each case has n subcases, represented as
> /n. The extension /n means the nbr of empty squares separating
> the mating piece and the mated king. Of course, there are no
> subcases for the knight cases.

> R(h)/n - mate by rook on (h) row, n from 2 to 6 R(a)/n - mate by
> rook on (a) row, n from 2 to 6 B(c)/n - mate by c1/c8 bishop, n
> from 1 to 4 B(f)/n - mate by f1/f8 bishop, n from 1 to 4 Q(lD)/n
> - mate by queen on its homesquare long diagonal, n from 2 to 3
> Q(sD)/n - mate by queen on its homesquare short diagonal, n from
> 1 to 2 Q(d)/n - mate by queen on (d) row, n from 2 to 6
> N(b)K(a)- mate by knight from its b1/b8 homesquare and oposite
> king on a3/a6 N(b)K(c)- mate by knight from its b1/b8 homesquare
> and oposite king on c3/c6 N(g)K(f)- mate by knight from its
> g1/g8 homesquare and oposite king on f3/f6 N(g)K(h)- mate by
> knight from its g1/g8 homesquare and oposite king on h3/h6

> For instance, in the Q(sD) case n=1 defines the king position
> b3(black king) or b6(white king). n=2 defines the king position
> a4(black king) or a5(white king).

> This way, there are now 31 different cases/subcases, each one
> having it's own potential record.

> The subcase n ranges have been defined as the feseable ones from
> the geometrical point of view without any further consideration.

> p: homebase mating side missing pawns m: PG single moves c:
> other side missing pieces

> a PG is characterized as (p,m,c). The task asks for economy, so
> p, m and c have to be minimized. Two different orders define two

> 1) Material task: minimize first p, then m and finally c. 2)
> Dynamic task : minimize m, then p and finally c.

> PRESENT RECORD STATUS (nov 24th 2006) On the vacancy of a
> dynamic record the material one is considered to be the double
> record.

> ************************************************************************
> CASE/n......(p,m,c)...Author....................(p,m,c)....Author
> ************************************************************************
> R(h)/2....- (1,20,2)..Nicolas Dupont
> ------------------------------------------------------------------------
> R(h)/3....-
> ------------------------------------------------------------------------
> R(h)/4
> ------------------------------------------------------------------------
> R(h)/5....-.(1,16,2)..Andrew Buchanan
> ------------------------------------------------------------------------
> R(h)/6....-.(1,14,2)..Andrew Buchanan
> ************************************************************************
> R(a)/2....-.(1,26,3)..Nicolas Dupont
> ------------------------------------------------------------------------
> R(a)/3
> ------------------------------------------------------------------------
> R(a)/4
> ------------------------------------------------------------------------
> R(a)/5
> ------------------------------------------------------------------------
> R(a)/6,,,,-.(1,18,2)..Andrew Buchanan
> ************************************************************************
> B(c)/1
> ------------------------------------------------------------------------
> B(c)/2
> ------------------------------------------------------------------------
> B(c)/3
> ------------------------------------------------------------------------
> B(c)/4....-.(1,28,6)..R.Osorio &
> J.Lois.........(2,24,1).R.Osorio & J.Lois
> ************************************************************************
> B(f)/1
> ------------------------------------------------------------------------
> B(f)/2....-.(3,20,0).J.Lois & R.Osorio.........
> ------------------------------------------------------------------------
> B(f)/3
> ------------------------------------------------------------------------
> B(f)/4....-.(1,27,3)..J.Lois & R.Osorio
> ************************************************************************
> Q(lD)/2
> ------------------------------------------------------------------------
> Q(lD)/3...-.(1,27,4)..J.Lois & R.Osorio.........(2,18,4).Nicolas
> Dupont
> ************************************************************************
> Q(sD)/1
> ------------------------------------------------------------------------
> Q(sD)/2...-.(2,20,2)..R.Osorio & J.Lois
> ************************************************************************
> Q(d)/2
> ------------------------------------------------------------------------
> Q(d)/3
> ------------------------------------------------------------------------
> Q(d)/4
> ------------------------------------------------------------------------
> Q(d)/5....-.(1,19,3)..J.Lois &
> R.Osorio.........(2,17,2).R.Osorio & J.Lois
> ------------------------------------------------------------------------
> Q(d)/6
> ************************************************************************
> N(b)K(a)-.(1,24,4)..R.Osorio & J.Lois
> ************************************************************************
> N(b)K(c)-.(2,25,3)..
> ************************************************************************
> N(g)K(f)-.(3,27,5)..R.Osorio & J.Lois
> ************************************************************************
> N(g)K(h)-.(1,24,4)..J.Lois & R.Osorio
> ************************************************************************

> The proof games
> ------------------------------------------------------------------------
> R(h)/5 (1,16,2) Andrew Buchanan
> rnbqkbnr/ppppppp1/8/8/4P3/6P1/PPPPN1PK/RNB2BR1

> R(h)/6 (1,14,2) Andrew Buchanan
> rnbqkbnr/ppppppp1/8/8/4P3/3B4/PPPPNPP1/RNB3RK

> R(a)/6 (1,18,2) Andrew Buchanan
> rnbqkbnr/1ppppppp/8/8/3P1Q2/4B3/1PP1PPPP/KR3BNR

> Q(d)/5 (1,19,3) Jorge Lois & Roberto Osorio
> rnb1q3/pppkrp2/2p1p2p/8/8/8/PPP1PPPP/RNBQKBNR

> Q(d)/5 (2,17,2) Roberto Osorio & Jorge Lois
> rnb1qbn1/p1pkppp1/2p1p3/8/8/8/PP2PPPP/RNBQKBNR

> Q(lD)/3 (1,27,4) Jorge Lois & Roberto Osorio
> 1n4n1/2q1p3/2pr2pr/6bk/7p/8/PPPP1PPP/RNBQKBNR

> Q(lD)/3 (2,18,4) Nicolas Dupont
> rnbqkbnr/ppp2ppp/8/4P2B/7K/6B1/PP4PP/RN4NR

> Q(sD)/2 (2,20,2) Roberto Osorio & Jorge Lois
> rsbqkbsr/pp1p1ppp/8/KB6/P7/4PS2/1PP2PPP/1SBQ3R

> B(f)/4 (1,27,3) Roberto Osorio & Jorge Lois
> 1n4n1/rpp3p1/kb3r2/p3p1q1/8/7b/PPPP1PPP/RNBQKBNR

> B(f)/2 (3,20,0) Jorge Lois & Roberto Osorio
> rsbqkbsr/p1p2ppp/8/1PK5/2R5/3P1Q2/1PPP1PPP/1SB2BSR

> B(c)/4 (1,28,6) Jorge Lois & Roberto Osorio
> rnbqkbnr/ppp1pppp/8/2P5/7P/6BK/P3P1PQ/5NN1

> B(c)/4 (2,24,1) Roberto Osorio & Jorge Lois
> rsbqkbsr/ppp2ppp/2P5/8/8/3PP1BK/P2PS1PP/RS1Q1B1R

> N(g)K(h) (1,24,4) Jorge Lois & Roberto Osorio
> rnbqkbnr/ppppppRp/7K/6BP/8/4P3/PP3PP1/1N1Q2N1

> N(g)K(f) (3,27,5) Roberto Osorio & Jorge Lois
> 3q1bs1/5p1p/5p2/3p4/4r1b1/5k2/PPP1sP1P/RSBQKBSR

> N(b)K(a) (1,24,4) Roberto Osorio & Jorge Lois
> rnbqkbnr/pRpppppp/K7/PB6/8/3P4/1PP3PP/1N1Q2N1

> N(b)K(c) (2,25,3) Jorge Lois & Roberto Osorio
> rn1q4/pppprpp1/8/8/1bn5/2k5/P1P1PPPP/RNBQKBNR
> -------------------------------------------------------------------------

> _______________________________________________ Retros
> mailing list Retros at janko.at
> http://www.pairlist.net/mailman/listinfo/retros